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Abstract—Java virtual machine (JVM) has the well-known
slow startup and warmup issues. This is because the JVM needs
to dynamically create many runtime data before reaching peak
performance, including class metadata, method profile data, and
just-in-time (JIT) compiled native code, for each run of even
the same application. Many techniques are then proposed to
reuse and share these runtime data across different runs. For
example, Class Data Sharing (CDS) and Ahead-of-time (AOT)
compilation aim to save and share class metadata and compiled
native code, respectively. Unfortunately, these techniques are
developed independently and cannot leverage the ability of each
other well. This paper presents an approach that systematically
reuses JVM runtime data to accelerate application startup and
warmup. We first propose and implement JWarmup, a technique
that can record and reuse JIT compilation data (e.g., compiled
methods and their profile data). Then, we feed JIT compilation
data to the AOT compiler to perform profile-guided optimization
(PGO). We also integrate existing CDS and AOT techniques
to further optimize application startup. Evaluation on real-
world applications shows that our approach can bring a 41.35%
improvement to the application startup. Moreover, our approach
can trigger JIT compilation in advance and reduce CPU load at
peak time.

Index Terms—Java, Java virtual machine, just-in-time compi-
lation, ahead-of-time compilation, application warmup

I. INTRODUCTION

Java has become one of the most popular programming lan-
guages, particularly for large-scale web applications, such as
e-commerce, financial, logistics and entertainment. However,
Java developers have always been plagued by the problems of
slow startup and warmup of Java applications. This is because
Java programs are compiled into bytecode and run in the Java
virtual machine (JVM). We use startup to refer to the phase
between the start of the JVM and the response of the first user
request. We use warmup to refer to the phase between the start
of the JVM and the peak performance.
Slow Startup. The slow startup is caused by class loading and
application initialization. JVM loads each visited Java class
dynamically to create a runtime metadata object [1] during
startup. Large-scale Java applications usually have tens of
thousands of Java classes or even more, which are packaged
into thousands of JAR files. In practice, it can take minutes
for those applications to start up before they are online and
begin to process user requests.
Warmup. JVM starts the execution in the interpreter first
and then gradually just-in-time (JIT) compiles hot methods
into native code with optimizations guided by profile data [2].
However, JVM is not expected to have high performance at
the beginning. Applications need carefully designed mocked

or even real user requests to exercise critical execution paths
to warmup the JVM.

Consequently, the above two limitations bring significant
challenges to agile software development, testing and deploy-
ment, especially when thousands of application instances need
to be deployed to the data center. Furthermore, these two
issues are also obstacles for building modern serverless and
cloud native software [3] using Java, where applications are
run in containers and are managed by container orchestration
software to achieve extreme scalability and automation.

We will have more opportunities to optimize application
startup and warmup if the JVM could have prior knowledge
of the applications. To this end, we adopt the “recording and
replaying” methodology to deploy applications. In Alibaba,
we first deploy an application at a small scale in the staging
environment (i.e., a near replica of a production environment
for testing) to collect runtime properties about the application.
This deployment is called beta release. If the application runs
without any issue in the staging environment, we then deploy
the application at the full scale in the production environment.
This deployment is called full release. In the full release, JVM
could leverage those profiling data collected in the beta release
and perform pertinent optimizations earlier.

To this end, we develop Atlas and JWarmup to accelerate
Java application startup and warmup, respectively, where both
of them are developed upon Alibaba Dragonwell [4], a down-
stream version of OpenJDK maintained by Alibaba. Atlas and
JWarmup systematically record various runtime data of the
execution of a Java application and reuse those data to speed
up application startup and warmup in subsequent executions
of the same application.

We evaluate the effectiveness of Atlas and JWarmup
against benchmarks and real-world Java applications. Results
show that Atlas reduces the startup time of a real-world
application from 5.2s to 3.0s, with a 41.35% improvement.
Meanwhile, JWarmup can trigger JIT compilation in advance
and reduce CPU load at peak time.

II. BACKGROUND

In this paper, we use JVM to refer to the HotSpot JVM in
OpenJDK, which is upstream of many JVM vendors including
Alibaba Dragonwell.

A. Lifecycle of Code Execution in JVM

Figure 1 illustrates the lifecycle of code execution in JVM.
Class Loading and Linking. The containing class of a Java
method or field must be loaded into JVM before the method
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Fig. 1. The lifecycle of code execution on the JVM.

or field is accessed. During class loading, JVM locates the
binary representation of the class with a particular name and
creates a class metadata object in JVM [5]. The class metadata
object represents the runtime type of the class.
Interpreter. Method bytecode is first executed by the in-
terpreter. Interpretation is the cornerstone of the subsequent
optimized execution. For example, JIT compiled code does
not check whether a class is loaded. All classes are loaded
during interpretation.
Profiling. The JIT compiler cannot perform sophisticated
code analysis and code optimization when JVM does not have
a complete picture of a Java method. JVM thus accumulates
method execution counters and collects various method pro-
filing data during interpretation.
Just-in-time Compilation. JVM submits hot methods to
the JIT compiler to generate efficient native code. The JIT
compiler leverages method profiling data to do aggressive code
optimizations, e.g., inlining monomorphic virtual calls [6].
De-optimization. JIT can do speculative optimizations ac-
cording to specific assumptions at JIT compile time. Later,
some assumptions are broke due to changes to the runtime,
e.g., new classes loaded. The compiled code then cannot
be executed anymore. JVM leverages the de-optimization
mechanism to dispose of the compiled code and fallback to
the interpreter to continue the execution. JVM re-profiles the
de-optimized method and may re-compile the method once it
becomes hot again.

B. Our Understanding of Startup and Warmup

JVM loads each class on-demand during startup. The appli-
cation starts to execute and perform necessary initialization.
Consequently, accelerating class loading and improving the
performance of initialization code during startup are two
possible solutions for accelerating application startup.

The essentials to speed up warmup is to identify and compile
hot methods to native code as soon as possible. In real-world
scenarios, a server application can be scheduled to handle
user requests immediately after it has started up. In practice,
enterprise Java applications launch thousands of threads to
process user requests, but JVM creates much fewer compiler
threads to perform JIT compilation. There is inevitable re-
source contention between JIT threads and application threads
during warmup. Therefore, hot methods cannot be compiled in
time and are interpreted longer than expected. As a result, the
designed critical performance metrics, such as response time
and CPU load, cannot be met, which threatens the availability
and stability of online services.

III. APPROACH

In this section, we elaborate on the technique details.

A. Recording

Figure 2 depicts the workflow of recording. Java appli-
cations are deployed in a staging environment to perform
JWarmup recording. Currently, JWarmup records touched
methods (i.e., methods that are executed) and various data used
by JIT compilation.
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Fig. 2. The workflow of recording.

We leverage Java Flight Recorder (JFR) [7] to record data
for JWarmup and store all data into a JFR profiling file. JFR is
a tool for collecting diagnostic and profiling data about a run-
ning Java application with negligible performance overhead.
We also use Application Class-Data Sharing (AppCDS) [8]
to record used classes into a shared archive file, which can
be used to accelerate class loading during replaying. Both the
JFR profiling file and AppCDS shared archive are archived
into the container image of the application or uploaded to the
cloud storage. Hence, applications deployed in the production
environment can use them for replaying.

One may note that JVM provides a flag -Xcomp to JIT
compile each method eagerly at the first execution. However,
due to unloaded classes and immature profiling data, such JIT
compiled methods are easily de-optimized and fall back to
interpretation soon.

To reduce unnecessary de-optimizations, JWarmup needs
to make a wise decision on when a method can be committed
to JIT compilation before profiling data are mature. If too late,
JWarmup fails to warmup the application in advance. If too
early, JIT compiled methods are frequently de-optimized due
to unloaded classes and immature profiling data. Our insight
is using method dependencies to represent the prerequisite for
compiling a method at runtime.

JWarmup identifies three categories of dependencies:
1) Type dependency is introduced by bytecode instructions

(e.g., new, invokevirtual and putfield) that rely
on type references in the JVM constant pool of the
method [9].

2) Object dependency is introduced by bytecode instructions
(e.g., invokedynamic) that rely on runtime objects in
the JVM constant pool of the method [9].

3) Profiling dependency is introduced by bytecode instruc-
tions that rely on profile data [6]. The profile data could
be a runtime type that must be loaded into the JVM but is
not necessarily in the JVM constant pool of the method.

JWarmup also records the inline tree of a compilation
task. This is because JIT compilers rely on various runtime
information together to guide the compilation of a method.



That is, the compilation of a given method not only depends
on bytecode and profile data of itself but also various other
information in JVM. Inlining is one of such optimizations.

B. Speeding up Application Startup
The application can be deployed in the production environ-

ment after it has been tested thoroughly in the staging envi-
ronment. We then propose Atlas to speed up the application
startup by using data recorded in the staging environment.
Figure 3 shows the workflow of Atlas. Atlas uses three
techniques, i.e., ahead-of-time (AOT) compilation, profile-
guided optimization (PGO) and AppCDS.
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Fig. 3. Workflow of Atlas during replaying.

First, Atlas invokes jaotc, i.e., the AOT compiler [10],
to compile Java classes to native code prior to launching
JVM. If all the application code and Java libraries are AOT
compiled, we will obtain quite large shared libraries, which
is unnecessary and suffers overhead during code loading and
linking. Therefore, we modify the AOT compiler to accept the
JFR file generated by JWarmup and parse touched methods
from it. The AOT compiler only needs to compile reachable
Java methods.

Second, the AOT compiler cannot perform aggressive code
optimizations since it does not have any profiling data. Simi-
larly, we modify the AOT compiler to parse profiling data from
the JFR file to perform profile-guided optimization (PGO).
More details of PGO are discussed in Section III-D.

JVM can load the AOT shared library and execute highly
optimized native code directly and bypass the interpreting
execution. Moreover, Atlas leverages AppCDS to reduce the
application startup time. We also developed a technique called
class pre-resolution (see Section III-E) to further reduce class
loading cost in the AOT code. With pre-resolution and Ap-
pCDS, Atlas can significantly reduce application startup time,
since thousands of classes are loaded during startup.

C. Speeding up Warmup
During replaying, JWarmup first parses data of recorded

JIT compilation data and listens to dependency resolution
and initialization events. JWarmup commits a method for
warmup JIT compilation once all dependencies of the method
are ready, which mostly happens before the counter of the
method exceeds the compilation threshold. JWarmup uses
parsed data to reconstruct the compilation environment. The
reconstructed environment can provide proper guidance for
JIT optimizations. For example, the recorded inlining tree
is used to guide the inlining decision. With JWarmup, the
method can be compiled in advance for early warmup without
compromising performance.

1:  ifeq  11
4:  Invoking o.x()
8:  goto 15
11: Invoking o.y()
15: return

if (cond) {
  o.x();
} else {
  o.y();
}

ifeq, BCI: 1
Taken:     4999

Not Taken: 1

Java Code Bytecode BranchData

Fig. 4. The HotSpot VM uses BranchData to record branch taken and not
taken frequency for the bytecode ifeq.

D. Profile-Guided Optimization

Profiling data allow the JIT compiler to perform adaptive
optimizations and significantly improve performance. Since
the AOT compiler does not collect profiling data, Atlas
leverages method profiling data recorded by JWarmup to
perform PGO. Basically, there are two kinds of profiling data:
counter-based data and type-based data.

Counter-based data record numbers associated with byte-
code instructions. Figure 4 depicts how JVM records branch
profiling for the if statement, which is translated to in-
struction ifeq. Note that every bytecode instruction has a
unique label. Profiling data are shown on the right-hand side
of Figure 4. For ifeq, JVM records the execution count of the
true branch (branch taken) and the false branch (branch
not taken). In this example, the branch taken and not taken
count are 4,999 and 1, respectively. Then we can see that the
false branch is an unlikely one and the JIT compiler can
leverage this information to perform adaptive optimization.

Type-based data record runtime types associated with byte-
code instructions. Atlas mainly uses type-based data to per-
form virtual call inlining and generate a fast path for subtype
checking.

if (b->_klass == GOT.Child) {
  // method body of Child.foo()
} else {
  // De-optimization
  uncommon_trap();
}

Base b = ...;
b.foo(); Java code

Pseudo native code

Fig. 5. Example code generated by Atlas for virtual call inlining.

Virtual Call Inlining. Figure 5 illustrates an example of
a Java virtual call and the optimized pseudo native code
generated by Atlas. In Figure 5, Child is the subclass of
Base and Child overrides method foo() declared in Base.
Then b.foo() is a virtual call. Assuming that profiling
data indicate that b in Figure 5 points to an instance of
class Child. This information allows the AOT compiler to
inline Child.foo() and generates type guards surrounding
the inlined method. In Figure 5, b->_klass represents
the type of b and GOT.Child refers to the resolved class
Child. Therefore, if b._klass equals to GOT.Child, b
should refer to an instance of Child. Then the inlining code
(method body of Child.foo()) can be safely executed.
Otherwise, an uncommon trap occurs. The AOT code is then



if (b->_klass == GOT.Child) {
  // subtype checking passed
} else {
  // De-optimization
  uncommon_trap();
}

if (b instanceof Child) {
  ...
} Java code

Pseudo native code

Fig. 6. Example code generated by Atlas for the fast path of subtype checking.

de-optimized. The virtual call is executed by the interpreter to
maintain correctness.
Fast Subtype Checking. Atlas can further optimize subtype
checking with profiling data, though the AOT compiler already
performs fast subtype checking [2] for instanceof and
checkcast by default. Specifically, if profiling data can tell
there is one and only one type for type checking, the AOT
compiler can create a fast path for type checking as shown
in Figure 6. Assuming Child is the only witnessed type.
The AOT compiler creates a type comparison, i.e., comparing
b._klass and GOT.Child, as the fast path of subtype
checking.

E. Class Pre-Resolution

An AOT shared library uses a global offset table (GOT) to
store runtime type identifiers i.e., pointers to class metadata
objects. At first, the GOT is empty. Once a class is resolved,
the JVM updates the GOT accordingly. AOT code relies on
calling a JVM internal function to resolve classes. According
to our profiling, this call is quite heavy. If AOT code con-
stantly triggers class resolution, it will introduce performance
overhead.

AppCDS offers us an opportunity to optimize class reso-
lution for AOT code. Since the shared archive is memory-
mapped, the addresses of class metadata objects are known
when the shared archive is generated. After the JVM is fully
initialized and about to start the main() method, Atlas
loads and resolves all the classes from the shared archive
and fills the GOT. Consequently, the overhead introduced by
repeatedly calling JVM runtime functions for class resolution
is eliminated. The application startup time can be further
reduced with Atlas.

IV. EVALUATION

We used real-world applications to demonstrate the effec-
tiveness of JWarmup and Atlas. Our evaluation answers the
following research questions (RQs):

• RQ1. Is JWarmup able to commit JIT compilation earlier
than the normal execution?

• RQ2. Is JWarmup capable of reducing JIT compiler CPU
load in the peak time of data traffic?

• RQ3. Is Atlas able to improve the performance of the AOT
code?

• RQ4. Can Atlas reduce application startup time?

A. RQ1. Early Warmup Compilation

We used a real-world e-commerce application of Alibaba
to evaluate JWarmup. First, one application instance was
deployed to the staging environment for recording. After that,
the recorded data file was uploaded to the Alibaba Cloud
Object Storage Service (OSS). In the full release, every ap-
plication instance downloaded the recorded file from the OSS
and started replaying. Data traffic was automatically injected
once the application finished startup and was discovered by the
scheduling system. We used JFR to record the CPU load of
the Java process and compiler threads. JFR started recording
while the application was launching and sampled CPU load
every second for three minutes. Figure 7 illustrates the CPU
load of the C2 compiler.
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Fig. 7. C2 compiler CPU load when JWarmup is disabled and enabled.

In Figure 7, the horizontal and vertical axes represent time
and CPU load, respectively. Line and show the
C2 compiler CPU load when the JWarmup is enabled and
disabled, respectively. From Figure 7 we can see that the C2
compiler CPU load peak of JWarmup comes earlier than the
baseline, which indicates that JWarmup is able to eagerly
trigger JIT compilation for application warmup.

B. RQ2. Reducing Peak Time CPU Load

Figure 8 compares the Java process CPU load when
JWarmup is disabled and enabled. Since JWarmup commits
hot method JIT compilation in advance, peak time CPU
load is reduced when data traffic coming into the system.
This advantage assures the stability and availability of online
services.

C. RQ3. Improving Code Performance for AOT

Atlas leverages PGO to improve the performance of the
AOT code. In this section, we use Java Micro-benchmark
Harness (JMH) to evaluate the effectiveness of PGO. We
wrote two micro-benchmarks, which can measures the effec-
tiveness of profile-guided virtual call inlining and fast subtype
checking, respectively. Table I shows the results of the two
benchmarks.

In Table I, virtual call inlining and subtype checking rep-
resent scores of two micro-benchmarks. The column Baseline
shows scores of AOT code and the column PGO are scores
of optimized AOT code by using method profiling data.
For virtual call inlining, PGO brings a 39.41% performance
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Fig. 8. Java process CPU load when JWarmup is disabled and enabled.

TABLE I
MICRO-BENCHMARK RESULTS WHEN PGO IS DISABLED AND ENABLED.

Baseline PGO Improvement

Virtual call inlining 42,968,335.45 59,901,311.35 39.41%
Subtype checking 38,492,467.53 38,983,705.35 1.28%

improvement, which shows the power of method profiling and
inlining. Since profile-guided fast subtype checking only saves
some memory operation, PGO brings a 1.2% improvement.

D. RQ4. Speeding up Application Startup

In this section, we used PetClinic, a real-world Spring
Boot application, to demonstrate that Atlas is capable of
accelerating application startup. Table II shows the startup time
of PetClinic under five configurations: (1) Atlas is disabled
(baseline), (2) only AppCDS is enabled, (3) only original AOT
is enabled, (4) both AppCDS and original AOT are enabled
and (5) Atlas is enabled. The time measured for startup time
by a particular configuration is the average of 20 runs.

For the baseline, the application startup time is 5.22s. When
the AppCDS is enabled, PetClinic started up in 3.84s with
a 26.51% improvement. Meanwhile, the original AOT even
causes performance degradation. PetClinic started up in 5.25s.
Besides, PefClinic startup in 3.82s with a 26.88% improve-
ment when both AppCDS and original AOT are enabled.
Finally, Atlas enabled PetClinic to startup in 3.06s with a
41.35% improvement. By combining AppCDS and profile-
guided optimized AOT, Atlas can significantly reduce the
application startup time.

V. DISCUSSION

ReadyNow! [11], [12] developed by Azul Systems saves
JIT compilation information during application running. When
replaying, it firstly performs class loading and initialization
and JIT compilation according to the profile recorded, then
executing user code. Since static initializers usually are not
side-effect-free, eagerly triggering class initialization rather
than in an on-demand manner may cause unexpected program
behaviors. JWarmup commits warmup JIT compilation in a
conservative but safe manner, i.e., using method dependencies
as the prerequisite of compiling a method.

PGO is an effective and widely used compiler optimization
technique [13], [14]. Atlas provides a pragmatic approach to

TABLE II
PETCLINIC STARTUP TIME UNDER FIVE CONFIGURATIONS.

Baseline AppCDS Original AOT AppCDS +
Original AOT Atlas

Startup Time/s 5.22 3.84 5.25 3.82 3.06
Improvement N/A 26.51% -0.47% 26.88% 41.35%

leverage JVM runtime data to reduce application startup time,
where AppCDS helps reuse class metadata and method pro-
filing recorded by JWarmup can improve code performance
generated by the AOT compiler.

VI. CONCLUSION

Large-scale Java application startup and warmup problems
have baffled Java developers all the time. In this paper, we
adopt the “recording and replaying” method and present Atlas
and JWarmup to mitigate these two problems. Evaluation
on real-world applications shows that JWarmup is able to
commit hot method compilation in advance and reduce peak
time CPU load and Atlas is capable of reducing application
startup time. Both JWarmup and Atlas will be open-source
in Alibaba Dragonwell in the future. JWarmup and Atlas
provide pragmatic solutions in practice for developing modern
serverless and cloud native software using Java.
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